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Abstract. Limitations of data quality and difficulties to assess 
uncertainty are long since acknowledged problems in LCA. 
During recent years a range of tools for improvement of reli- 
ability in LCA have been presented, but despite this there is still 
a lack of consensus about how these issues should be handled. 
To give basic understanding of data quality and uncertainty in 
LCA, key concepts of data quality and uncertainty in the con- 
text of LCA are explained. A comprehensive st~rvey of methods 
and approaches for data quality management, sensitivity analy- 
sis, and uncertainty analysis published in the LCA literature is 
presented. It should serve as a guide to further reading for LCA 
practitioners interested in improving data quality management 
and uncertainty assessment in LCA projects. The suitability of 
different tools for addressing different types of uncertainty and 
future needs in this field is discussed. 
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Introduction 

The reliability of life cycle assessment (LCA) is affected by 
dependence on data from different countries, different unit 
operations, different sources, data that is frequently not col- 
lected for LCA purposes [1], and more or less subjective 
methodological choices. LCA results are usually presented 
as point estimates, which strongly overestimate the reliabil- 
ity. This may lead to decisions that are unnecessarily costly, 
or mislead public perception about the environmental pro- 
file of a product or process [2]. These are long-since ac- 
knowledged problems. As noted already by Vigon and Jensen 
(1992, as cited in [2]), LCA practitioners lack systematic 
approaches for determining data quality, and need improved 
techniques for sensitivity and uncertainty analysis. Despite 
this, although this matter is often discussed, real assessments 
are rarely performed. In a review of 30 recent LCA studies, 
almost half of which acknowledged the uncertainty of the 
results, only three included some sort of quantitative or quali- 
tative uncertainty analysis [3]. This is not surprising, since 
there is a lack of consensus about methodology. The recent 
ISO standard recommends the use of such methods [4-6], 
but gives little practical guidance. Early publications in this 
field focused on qualitative methods. Lately, a number of 
quantitative tools have been developed. Recently, frame- 
works addressing LCA reliability by integrating quantita- 
tive and qualitative approaches have been presented. 

This paper is a survey of the literature regarding reliability 
in LCA. Key concepts of uncertainty in the context of LCA 
are explained. Quantitative and qualitative methods for data 
quality management, sensitivity analysis, and uncertainty 
analysis are presented. The intention of this paper is not to 
thoroughly explain all the details, but to provide an over- 
view of the subject. It should also serve as a guide to further 
reading for those interested in improving the reliability of 
LCA studies. 

Because of its close similarity to LCA, literature on material 
flow analysis (MFA) was also surveyed. Other related fields, 
such as risk assessment, were not surveyed. Focus is on un- 
certainty in the inventory phase of LCA, less on impact as- 
sessment. Weighting and interpretation is not within the 
scope of this paper. 

1 Types and Sources of Uncertainty 

Strictly, uncertainty arises due to lack of knowledge about the 
true value of a quantity. It should be distinguished from vari- 
ability, which is attributable to the natural heterogeneity of 
values. Uncertainty can be reduced by more accurate and pre- 
cise measurements. Variability cannot be reduced by further 
measurement, although better sampling can improve knowl- 
edge about variability. In this paper, 'uncertainty' encompasses 
uncertainty and variability. It also includes other factors that 
affect the reliability of LCA models, some of which are not 
even related to quantities. In the following, different types of 
uncertainty appearing in LCA models are presented. 

Data inaccuracy: Data inaccuracy concerns the empirical 
accuracy of measurements that are used to derive the nu- 
merical parameter values [7]. Measurements can be subject 
to random error, which results from imperfections in the 
measuring instrument and observational techniques, or sys- 
tematic error, which results from an inherent flaw or bias in 
the data collection or measurement process [2]. 

Data gaps: Missing parameter values may leave the model 
with data gaps [7]. 

Unrepresentative data: Data gaps may be avoided by using 
unrepresentative data [7], typically data from similar pro- 
cesses, but of unrepresentative age, geographical origin, or 
technical performance. 

Model uncertainty: Model uncertainty is due to simplifica- 
tions of aspects that cannot be modelled within the LCA 
structure, such as temporal and spatial characteristics lost 
by aggregation, linear instead of non-linear models, or deri- 
vation of characterisation factors [8]. 
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Uncertainty due to choices: Choices are unavoidable in LCA. 
Because there is often not one single correct choice, there is 
uncertainty in choice, for instance, of allocation rules, func- 
tional unit, system boundaries, characterisation method, 
weighting method [8,9], marginal or average data [10], or 
technology level [11]. 

Spatial variability: Variability stems from inherent fluctua- 
tions in the real world. Although there are natural varia- 
tions between different geographical sites, environmental 
interventions are usually summed up in the impact assess- 
ment, regardless of the spatial context. Examples of factors 
that vary over space are background concentration and hu- 
man population density [8]. 

Temporal variability: Variations over time are relevant in 
both the inventory and impact assessment, as processes and 
factors in the receiving environment vary naturally over short 
and long time scales. Examples are process emissions, wind 
speed, and temperature. Another aspect is the chosen time 
horizon to integrate potential effects, which, for instance, 
applies to global warming potentials (GWP), photochemi- 
cal ozone creation potentials (POCP) [8], and emissions from 
landfills [12]. 

Variability between sources and objects: Variability also 
appears between sources of the inventoried system (e.g. in- 
herent variations in comparable technical processes), objects 
that determine the impact on the environment (e.g. human 
characteristics such as body weight or sensitivity to toxic 

substances), and preferences that determine the weighting 
of impacts [8]. 

Epistemological uncertainty: Epistemological uncertainty is 
caused by lack of knowledge on system behaviour [13]. It 
affects all phases of LCA. By nature, it is seldom acknowl- 
edged, and is very difficult to assess. A certain type of epis- 
temological uncertainty arises when future systems are mod- 
elled, because the future is inherently uncertain. 

Mistakes: Sheer mistakes are also a source of uncertainty [14]. 
As is the case with epistemological uncertainty, mistakes are 
seldom acknowledged and are very difficult to assess. 

Estimation of uncertainty: Estimation of all types of uncer- 
tainty is in itself a source of uncertainty [15]. 

In Table 1, different types of uncertainty are linked to the 
point of introduction in the LCA process. 

2 Improving Data Quality and Availability 

Data quality relates to the degree of confidence in individual 
input data, in the data set as a whole, and ultimately deci- 
sions based on the LCA study [16]. It depends on the ability 
of data to satisfy stated requirements [4], its relevance for 
the particular application, and compatibility with the other 
input data [1]. Thus, it is a relative rather than an absolute 
measure. Data quality can be expressed through informa- 
tion about the data (meta-data) concerning uncertainty, re- 

Table 1: Point of introduction in the LCA of different types of uncertainty, and examples of possible sources. Based on Huijbregts (1998a) 

Goal and scope Inventory Choice of impact Classification Characterisation 

Data inaccuracy 

Data gaps 

Unrepresentative 
data 

Model uncertainty 

Uncertainty due to Choice of 
choices functional unit, 

system 
boundaries 

Spatial variability 

Temporal variability 

Variability between 
objects/sources 

Epistemological Ignorance about 
uncertainty relevant aspects 

of studied system 

Mistakes Any 

Estimation of 
uncertainty 

Inaccurate emission 
measurements 

categories 

Uncertainty in life times of 
substances and relative 
contribution to impacts 

Lack of inventory data Lack of impact data 

Lack of representative 
inventory data 

Static instead of dynamic Static instead of dynamic 
modelling. Linear instead modelling. Linear instead of 
of non-linear modelling non-linear modelling 

Choice of allocation Leaving out known Choice of characterisation 
methods, technology level, impact categories methods 
marginal/average data 

Regional differences in Regional differences in 
emission inventories environmental sensitivity 

Differences in yearly 
emission inventories 

Contribution to 
impact 
category is not 
known 

Differences in performance 
between equivalent 
processes 

Ignorance about modelled Impact categories 
processes are not known 

Choice of time horizon. 
Changes in environmental 
characteristics over time 

Differences in 
environmental and human 
characteristics 

Characterisation factors are 
not known 

Any Any Any Any 

Estimation of uncertainty of Estimation of uncertainty of 
inventory parameters characterisation parameters 
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liability, completeness, age, geographical area, process tech- 
nology or technological level [17]. There are tools aiming to 
improve data availability and quality by ensuring 'good prac- 
tice' in data collection and use. They cannot guarantee good 
data quality and low uncertainty, but may improve model trans- 
parency and credibility. The ISO standard addresses how data 
quality should be considered in LeA [4,5]. SETAC [16] pre- 
sents an iterative framework for LeA data quality in energy, 
raw materials, environmental emissions, ecological health and 
human health data. Guidelines for systematically assessing and 
communicating data quality are provided by USEPA [2]. In 
the following, a number of qualitative and quantitative ap- 
proaches to improve data quality in LeA are presented. 

Standardisation: Standards are not imperative, but often 
become widely used because of the convenience. Following 
a standard may increase credibility by making it easier to 
communicate how a study was done. It is also more likely 
that good practice is used throughout the LeA, and that 
mistakes are avoided. Standards may be especially useful in 
reducing uncertainty due to choices in LeA [8], by outlin- 
ing e.g. how to define functional units, draw system bound- 
aries, and what allocation methods to use. The ISO stan- 
dards will probably be widely accepted and used when 
entirely finalised. 

Databases: Databases can make well-defined data more 
widely accessible. If the data base format includes data qual- 
ity aspects, this facilitates uncertainty assessment. A major 
problem is to agree on a common format. Another is data 
collection; one must for instance overcome the data provid- 
ers' fear of revealing proprietary information and misuse of 
data. The two most widespread initiatives to develop ge- 
neric LCI database structures are the SPINE [18] and SPOLD 
[19] formats. Product, material, or process specific databases 
have been developed, without attempting to set standards 
for a common data-reporting format. 

Data quality goals, DQG." DQGs specify in general terms 
the desirable characteristics of the data needed for the study 
[17]. They should be defined during the goal and scope phase 
of an LeA, and aid practitioners in structuring data acquisi- 
tion. As data quality ultimately depends on the relevance 
and compatibility of data, DQGs will be tailored to the spe- 
cific study [1,16]. The documented data quality may subse- 
quently be related to the DQGs through the use of data qual- 
ity indicators [17]. According to the ISO standard [4], data 
quality requirements should be included for the following 
aspects: 1) time-related coverage, 2) geographical coverage, 
3) technology coverage, 4) precision, completeness and rep- 
resentativeness of the data, 5) consistency and reproducibil- 
ity of the methods used throughout the LCA, 6) sources of 
the data and their representativeness, and 7) uncertainty of 
the information. 

Data quality indicators, DQI: DQIs can be used to assess 
data quality, by either qualitatively or quantitatively relat- 
ing the quality of LCI data to the DQGs. The ISO standard 
does not require use of DQIs, but asks for extensive report- 
ing e.g. of data quality requirements, data collection, data 
sources, data quality assessment and treatment of missing 
data [5]. Examples of DQIs are: accuracy, bias, completeness, 

data distribution, precision, uncertainty, applicability, consis- 
tency, derived models, identification of anomalies, peer review, 
representativeness, reproducibility, stability, transparency, data 
collection methods and limitations, and references [2,16]. D QIs 
have also been defined slightly differently as semi-quantitative 
numbers attached to a data set, representing the quality of the 
data [17,20-22]. The quality of each data point or data set is 
assessed as qualitative DQIs in a so-called pedigree 1 matrix, 
and then translated to semi-quantitative numerical scores. It 
is important that the indicators are mutually independent, to 
avoid any kind of double counting. 

Validation of data: Validation can be performed by estab- 
lishing mass balances, energy balances, and comparative 
analyses of emission factors to reveal anomalies in data [5]. 

Parameter estimation techniques: Data gaps should be fur- 
ther treated to find a "justified non-zero value, a justified 
zero value, or a calculated value based on reported values 
from similar technologies [5]. Imputation includes a wide 
range of procedures of replacing a missing value with a value 
considered to be a reasonable proxy or substitute [2]. Impu- 
tation methods suitable in LeA are e.g. mass balances to 
derive missing data on material flows, using data from simi- 
lar technologies, or average industry data. 

Additional measurements: Additional measurements and 
data research may provide useful information to improve 
data quality and availability [8]. 

Higher resolution models: Model simplifications are com- 
mon and necessary in LeA. The use of non-linear models, 
dynamic models, and multi-media models can reduce model 
uncertainty and address temporal and spatial variability [8]. 

Critical review: Critical review, or peer review, shall be in- 
cluded to ensure scientific and technical validity, appropriate 
use of data, sound interpretation, transparent and consistent 
reporting, and consistency with the standard [4]. Peer review 
can address uncertainty due to choices, by judging choices on 
their merits [8]. However, it is often time consuming and costly, 
and may unfortunately remain inconclusive [1]. 

3 Sensitivity and Uncertainty Importance Analysis 

Sensitivity is the influence that one parameter (the indepen- 
dent variable) has on the value of another (the dependent 
variable), both of which may be either continuous or dis- 
crete. Independent variables in LeA may be input param- 
eter value (continuous), system boundary, allocation rule, 
model choice, or process choice (all discrete). Dependent 
variables may be output parameter values (continuous) or 
priorities between alternatives in a comparative study (dis- 
crete). Sensitivity analysis is a systematic procedure for esti- 
mating the effects on the outcome of a study of the chosen 
methods and data [5]. It can be applied with either arbi- 
trarily selected ranges of variation, or variations that repre- 
sent known ranges of uncertainty. The latter is also known 
as uncertainty importance analysis. Different types of sensi- 
tivity and uncertainty importance analysis are explained in 
further detail below. 

1 pedigree: the origin and the history of something 
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3.1 Sensitivity analysis 

The ISO standard prescribes that sensitivity analysis should 
focus on the most significant issues, to determine the influ- 
ence on variations in assumptions, methods, and data [6]. 

Tornado diagrams: Tornado diagrams illustrate the change 
in output parameter values for equal levels of change in in- 
put parameters. The model is run with low and high values 
for each parameter while all other parameters are held con- 
stant. The results are represented in lying bar graphs, the 
top bar representing the output range of the most sensitive 
parameter, and the bottom bar representing the least sensi- 
tive parameter [2], giving a graph shaped like an upside- 
down triangle, hence the simile to a tornado. 

One-way sensitivity analysis: One-way sensitivity analysis 
determines the amount an individual input parameter value 
needs to change, all other parameters held constant, in or- 
der for output parameter values to change by a certain per- 
centage [2]. 

Scenario analysis: Scenarios in LCA studies are descriptions 
of possible future situations, based on specific assumptions 
about the future, and are characterised by choice of system 
boundaries, allocation methods, technology, time, space, 
characterisation methods, and weighting methods [22]. Sce- 
nario analysis involves calculating different scenarios, to 
analyse the influence of discrete input parameters on either 
output parameter values or priorities. 

Factorial design + multivariate analysis, MVA: Sensitivity 
analysis of output parameter values to changes in discrete 
input parameters can be performed by experimental facto- 
rial design and MVA [23]. Changes in the discrete input vari- 
ables are represented by the high and low levels in factorial 
design. Scenario calculations replace the experiments. Each 
combination of high and low levels creates a unique combi- 
nation of output parameter values. MVA is used to detect 
what independent variables have large influence on the de- 
pendent variables. 

Ratio sensitivity analysis: In ratio sensitivity analysis, which 
is applicable only in comparative studies, a ratio is calcu- 
lated to determine the percentage an input parameter value 
needs to change in order to reverse rankings between two 
alternatives. The sensitivity is expressed as the ratio of the 
difference between alternatives over individual process com- 

ponents. For instance, sensitivity of energy consumption 
would be expressed as the ratio of the difference in total 
energy consumption over the energy consumption in indi- 
vidual process steps [2]. 

Critical error factor, CEF: The CEF is a measure of the sen- 
sitivity of a priority between two alternatives to an input 
parameter value x. It is calculated as the ratio of the critical 
error ~x, i.e. variation in x required to bring about a change 
in priority, over the value of x, i.e. CEF = Ax/x [24]. 

Table 2 lists the tools according to what type of input and 
output parameter they handle. 

3.2 Uncertainty importance analysis 

Uncertainty importance analysis focuses on how the uncer- 
tainty of different parameters contributes to the total uncer- 
tainty of the result [25]. A parameter can have large uncer- 
tainty, but still contribute insignificantly to the Overall 
uncertainty. This is identified by determining the uncertainty 
of a parameter, either qualitatively or quantitatively, and 
combining this information with a sensitivity analysis. It gives 
more specific information than ordinary sensitivity analy- 
sis, and can be used to prioritise efforts to reduce uncer- 
tainty. It is equivalent to the selection of the main data [26], 
or finding key issues [27], and illustrated in Fig. 1. 

h ~  
uncertainty 

low 

perhaps a key issue , key issue 
I 
! 

. . . . . . . . . . . . . . . .  T . . . . . . . . . . . . . . .  

I 

not key issue ', perhaps a key issue 
i 

low high 

contribution 

Fig. 1: Finding key issues in an uncertainty importance analysis, based on 
Heijungs (1996) 

Quantitative uncertainty importance analysis: Quantitative 
uncertainty importance analysis can be performed in the same 
manner as a sensitivity analysis by Tornado diagrams, but 
using known uncertainty ranges of input variables rather 
than the same variation for each input variable. Variations 
in output will then reflect how the uncertainty of single pa- 
rameters affects the results. Another means is to calculate 

Table 2: Tools available to handle the different combinations of input and output variables in sensitivity analysis in LCA 

1. Parameter value 2. Priority 

1. Parameter value Tornado diagrams Ratio sensitivity analysis 
One-way sensitivity analysis Critical error factor 

2. Allocation rule Scenario analysis Scenario analysis 
Factorial design + MVA 

3. Boundary Scenario analysis Scenario analysis 
Factorial design + MVA 

4. Model Scenario analysis Scenario analysis 
Factorial design + MVA 

5. Process Scenario analysis Scenario analysis 
Factorial design + MVA 
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the correlation between model input and total model out- 
put. This requires total model uncertainty to be calculated 
prior to the uncertainty importance analysis. The tool Crys- 
tal Ball | has been used to calculate total uncertainty by 
Monte Carlo or Latin Hypercube simulation (c.f. 'Uncer- 
tainty analysis') [28,29]. This tool calculates uncertainty 
importance by computing the correlation between param- 
eter uncertainty and model outcome. A third means is to 
calculate relative sensitivity [23], the ratio of the standard 
deviation o X of a parameter over the critical error Ax (varia- 
tion in x required to bring about a change in priority), i.e. 
relative sensitivity = offAx. This ratio is a measure of how 
large an influence x may have on the priority obtained. 

Qualitative uncertainty importance analysis: Qualitative 
uncertainty importance analysis requires less numerical data, 
and is therefore less time consuming and closer at hand to 
use as a screening method. Main (important) data may be 
selected by first identifying key issues [26]. The contribu- 
tion of individual processes is determined by dividing the 
elementary flows of a unit process by the cumulative elemen- 
tary flow of the model. Processes with high contribution fit 
in the two right quadrants of Fig. 1. Qualitative assessment 
of uncertainty is done using DQIs according to [17], which 
are aggregated to a single DQI. High scores (high uncer- 
tainty) are placed in the upper quadrants. 

4 Uncertainty Analysis 

Uncertainty analysis is a systematic procedure to ascertain 
and quantify the uncertainty introduced into the results of a 
life cycle inventory analysis due to the cumulative effects of 
input uncertainty and data variability [5]. The ISO standard 
acknowledges that uncertainty analysis as applied to LeA is 
a technique in its infancy, but whenever feasible, such analysis 
should be performed to better explain and support the LCI 
conclusions. Uncertainty analysis can be performed by esti- 
mating the uncertainty of each parameter, expressing it as 
uncertainty distributions, and propagating the uncertainty 
through models to the final output. This is only possible 
when the uncertainty can be described by statistical func- 
tions. Other types of uncertainty, like data gaps and model 
uncertainty, require other techniques. 

4.1 Estimating uncertainty in input data 

Uncertainty in data is expressed quantitatively as a distribu- 
tion over a certain range, which is ideally derived by statis- 
tical analysis of multiple measurements. LeA data, how- 
ever, are more likely to be based on single point estimates. 
In this case some kind of expert judgement is needed. 

Statistical analysis of actual data: If multiple measurements 
of a data point are available, the distribution can be deter- 
mined by statistical analysis. Probability distributions can 
be derived by the observation of histograms in which the 
cumulative distribution of measurements is plotted [30]. For 
extensively measured parameters, classical statistical analy- 
sis can be used for curve fitting and to determine the mean 
and standard deviation [26]. Data based on little informa- 
tion may include a few measurements, which can be used to 

determine the endpoints of a uniform distribution, or if one 
value appears to be more likely, of a triangular distribution 
[26]. With few measurements, the t-distribution is more 
applicable than the common normal distribution, and gives 
a more conservative and defensible estimate of the level of 
uncertainty [22]. 

Expert judgement: Expert judgement can be used when sta- 
tistical analysis is not possible. In its simplest form, expert 
judgement is simply a best estimate based on the experience 
of an expert in the relevant field. If for example one param- 
eter relies on another for which the distribution is known, 
or if there is a similar process for which the distribution is 
known, these can be used as substitutes. A more formalised 
form of expert judgement is to derive distributions from the 
semi-quantitative DQI entries in a pedigree matrix (c.f. 'Data 
Quality Indicators'). Weidema and Wesnms [17] presented 
the first developments of this method for LCI data. They 
distinguish between the basic uncertainty of data (inaccu- 
racy), and the additional uncertainty (unrepresentativity) 
represented by the DQIs in the pedigree matrix, and present 
a method for combining the basic inaccuracy and additional 
unrepresentativity. A single DQI can also be assigned to each 
input data element on a sliding scale [21,31,32]. The DQIs 
are transformed to probability distributions by representing 
each DQI value by a default distribution. A similar method 
was developed for MFA studies. Data are categorised in five 
different uncertainty levels depending on the data source. 
Each level corresponds to a certain uncertainty interval [33]. 

4.2 Expressing uncertainty 

Uncertainty distributions, defined by spread and pattern, 
describe how a parameter can be expected to deviate from 
its real value. Depending on the type of uncertainty and the 
amount of available information, different distributions can 
be used. Not all types of uncertainty can be expressed in 
the form of a mathematical distribution, e.g. uncertainty 
due to choices. 

Probability distributions: Probability distributions are used 
to describe the uncertainty of inaccurate data, and express 
the probability that a variable will take on any number within 
a certain range (Fig. 2). 

f(x) 
1, ...-.,. ,,." "\  

/ \ 

I-"  . . . .  1 

. . . . . . . . . . .  . . . . . . . . . . . .  

x 

Fig. 2: Examples of probability distribution (1), uniform error interval (2), 
and vague error interval (3) 
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Frequency distributions: Variable data can be represented 
by frequency distributions, which organise raw data in classes 
and frequencies, most commonly presented as a histogram. 
Histograms can be approximated by the same type of distri- 
butions as used for probability distributions (Fig. 2). 

Uniform (exact) error intervals: When the extreme values of 
a distribution are known, but not the distribution, or when 
data represent an interval, uniform intervals can be used 
[9,34]. In a uniform interval, all values are equally prob- 
able. This is a pessimistic representation, by over-estimating 
the tails and under-estimating the shoulders of the distribu- 
tion (Fig. 2). 

Vague error intervals: This is an extension of uniform inter- 
vals in which data is modelled as trapezes or triangles, and 
it gives a more optimistic representation of the distribution 
[9]. It can be used as a rough estimate of a probability distri- 
bution. It can also be used to model fuzzy data, the realism 
of which decreases with increasing accuracy [34]. In this 
context, vague intervals are known as fuzzy intervals or 
possibility distributions (Fig. 2). 

4.3 Performing uncertainty analysis 

Classical statistical analysis: Classical statistical analysis is 
widely used and accepted in other fields than LCA. It can be 
used if errors are given as probability distributions and with 
the assumption that the different data are independent [9]. 
Classical statistical analysis has been used in LCA, but with 
incomplete descriptions of important assumptions, determi- 
nations of probability distributions, etc. [13,22,35]. USEPA 
[2] presents uncertainty propagation formulas for random and 
systematic uncertainty, but without application to real data. 

Bayesian statistical analysis: Bayesian statistical analysis is 
based on the assumption that subjective estimates of uncer- 
tainty can be treated with classical statistical analysis. In 
practice, most assertions about uncertainty in LCI data are 
based on subjective estimates. Thus, when classical statisti- 
cal analysis is applied to LCI data, the assumptions underly- 
ing Bayesian statistics are implicitly made. In a method called 
'Successive estimation', Bayesian statistical analysis is ex- 
plicitly applied in combination with a kind of screening 
methodology, which systematically limits the inventory phase 
of an LCA [36]. 

Interval arithmetic: Uncertainty that is expressed as uniform 
intervals can be propagated by calculation with extreme 
values [9], or basic operations in interval arithmetic [34]. 

Vague error interval calculation: The propagation techniques 
for vague error intervals are derived from their uniform in- 
terval counterpart [9]. The propagation of fuzzy intervals in 
LCA matrices is described in [37]. Hedbrant and S6rme [33] 
suggest that large uncertainties are better expressed in terms 
of magnitudes leading to asymmetrical intervals. A method- 
ology is presented and applied to MFA. A similar approach 
for LCA is presented by Huijbregts [28]. 

Probabilistic simulation: Two probabilistic, or stochastic, 
simulation techniques have been described in an LCA con- 
text, Monte Carlo and Latin Hypercube simulation. The steps 

of Monte Carlo simulation are 1) specify probability distri- 
butions for the model inputs, assumed to be independent, 2) 
sample randomly once from each input probability distri- 
bution, 3) plug the random samples into the model to ob- 
tain model outputs, and 4) repeat steps 2 and 3 N times to 
obtain N samples of each output [29]. The result is a fre- 
quency distribution of each output [ 15], which approximates 
the probability distribution and can be analysed with stan- 
dard statistical techniques [29]. Larger sample size (N) gives 
better resemblance to the actual probability distribution. 
Assuming independence of input variables may overestimate 
output uncertainty. A means to avoid this is to include as a 
parameter, the parameter that two dependant variables have 
in common in the Monte Carlo simulation. Monte Carlo 
simulation with DQI-derived probability distributions is 
described in [21] and [31]. It has also been combined with a 
procedure for the selection of main data [26], and used to 
determine the significance of differences between alterna- 
tives [15,23]. Latin Hypercube simulation is similar to Monte 
Carlo, but segments the uncertainty distribution of a pa- 
rameter in non-overlapping intervals of equal probability. A 
value is selected from each interval, according to the prob- 
ability within the interval, leading to generally more precise 
random samples [8]. 

Scenario analysis: Scenario analysis, which is the same 
method as described in the sensitivity analysis section, in- 
volves calculating a few distinct scenarios. This method is 
useful when investigating uncertainty due to choices [8]. 

Rules of thumb: When any kind of detailed information on 
uncertainty is lacking, rules of thumb may be a useful strat- 
egy. These are generic estimates of the range of uncertainty 
for different categories of data. Finnveden and Lindfors [38] 
present rules of thumb for data categorised as: central non- 
substitutable resources, less central and substitutable re- 
sources, outflows calculated from inflows, other energy re- 
lated emissions, other process specific emissions, total 
amount of solid waste, and specific types of solid waste. 
Based on data from Swedish sulphate pulp mills, Hanssen 
and Asbjornsen [39] present rules of thumb for variation in 
data, making difference between comparisons within or be- 
tween systems, and chain specific or branch generic data. 

Expert judgement: Expert judgement can be used to esti- 
mate uncertainty distributions [8], but can also be used to 
estimate the total uncertainty of model output. 

Table 3 provides an overview of the surveyed tools and ap- 
proaches to address different types of uncertainty in LCA. 

5 Frameworks 

Because of the diversity of types and sources of uncertainty 
in LCA and of tools to handle it, uncertainty assessment 
requires guidance by a framework. Early frameworks were 
largely based on qualitative methods for data quality con- 
trol, with suggestions of some quantitative tools for sensi- 
tivity and uncertainty analysis (e.g. [2,40]). They provide 
good information, but are no step-by-step procedures and 
would be difficult to apply in practice. The recent develop- 
ment of new tools has improved the possibility to develop a 
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Table 3: Overview of tools available to address (reduce and/or illustrate) different types of uncertainty in LCA. Based on Huijbregts (1998a) 
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Standardisation 

Data bases 

Data quality goals x 

Data quality indicators x 

Validation of data 

Parameter estimation 

Additional measurements x 

Higher resolution models 

Critical review 

Sensitivity analysis x 
r~.  

Uncertainty importance analysis x 

Classical statistical analysis x 

Bayesian statistical analysis x 

Interval arithmetic x 

Vague error intervals x 

Probabilistic simulation x 

Scenario modelling 

Rules of thumb x 

X X 

X X 

X X X 

X X X 

X X X 

X X X 

X X X X X 

X X 

comprehensive framework. Work in this field is pursued, 
for instance, within the SETAC LCA Workgroup 'Data Avail- 
ability and Data Quality'. Outcomes have been a frame- 
work for classification of uncertainty [8], and an overall 
framework for data uncertainty assessment [7]. The five- 
step procedure for uncertainty assessment in Maurice et al. 
[26] is in essence also a framework. New frameworks tend 
to converge towards the same main components; 1) scoping 
the uncertainty analysis, 2) selecting a method for model- 
ling the uncertainties, 3) assessing the uncertainties in input 
data, 4) propagating the uncertainties through models, 5) 
reporting the uncertainty of output data [41]. 

6 Discussion and Conclusions 

6.1 About the tools 

Most of the tools in this inventory were not developed spe- 
cifically for LCA applications. They are already well tried in 
other areas, and if necessary adjusted to the specific condi- 
tions of LCA. A few tools were actually developed for LCA, 
but even in these cases existing statistical methods form the 
basis. This is hardly surprising. Statistical analysis is gener- 
ally well explored for other purposes, and the problems of 
LCA are encountered in other fields. The diversity of tools 
is considerable, which makes it difficult to settle for which 
to use. However, it is quite clear that because of the diverse 
types of uncertainty, not one method alone is enough. Thus, 
the range of methods appears quite necessary to cover all 

possible needs. Future efforts are needed to show what tools 
to use in different situations, and how they can be combined 
to be of the most use. 

Standardisati0n of the LCA methodology can improve trans- 
parency and reduce methodological uncertainties. It is impor- 
tant that the standard is comprehensive and consistent. The 
ISO standard has been criticised for not considering all types 
of LCA applications and for being inconsistent in its recom- 
mendations of system boundaries and allocation procedures 
[42]. Development of standardised databases will improve data 
availability. A problem, but also strength of standards and 
databases, is that they require consensus among LCA practi- 
tioners. They are therefore time and resource demanding long- 
term solutions. DQGs and DQIs are simpler approaches. These 
methods can be tailored to the specific needs in each case, 
which makes them flexible. Although mainly qualitative, they 
can be of good help in improving data quality. Making addi- 
tional measurements of inventory data or using higher resolu- 
tion models to achieve more accurate estimates of modelled 
phenomena are seemingly simple approaches, but often too 
time and resource demanding. 

Sensitivity and uncertainty importance analyses give better 
knowledge and understanding of a model and its behaviour. 
This may be more valuable for overall credibility than elabo- 
rate uncertainty assessment or spending resources to improve 
data quality. Uncertainty importance analysis is also a good 
screening methodology, which can help to prioritise in a 
model improvement process. Drawbacks of sensitivity analy- 

70 Int J LCA 7 (2) 2002 



LCA Methodology Reliability 

sis are that intensive effort is required to perform sensitivity 
analysis of all parameters, combinations with potential syn- 
ergism are overlooked, and it makes no direct consideration 
of relative probability [29]. 

Classical statistical analysis was the first quantitative tool to 
be proposed for quantitative uncertainty analysis in LCA. But 
apparently it has not been very successful. Despite many theo- 
retical descriptions, it has only been used in limited assess- 
ments. The reason appears to be the difficulty of statistically 
deriving uncertainty distributions. A natural solution is to use 
Bayesian statistical analysis, which is similar to classical sta- 
tistical analysis, but with uncertainty distributions based on 
expert judgement. Probabilistic simulation is often mentioned 
as an especially promising technique. It allows for the use of 
any type of uncertainty distribution, depending on what in- 
formation is available [8,26,27], and different distributions 
can be mixed in the same simulation. It can also be used with 
all kinds of operations [26]. An LCA model already imple- 
mented as a computer model requires little additional model- 
ling, which makes it suitable for large models for which it is 
complicated to propagate uncertainty analytically. 

The difficulty of estimating uncertainty of input data is a 
severe limitation to all types of uncertainty analysis. Expert- 
based methods need to be used. Using semi-quantitative DQIs 
to derive uncertainty distributions is more formalised than 
most expert-based approaches, which makes it attractive. 
However, the same pedigree score, for instance of techno- 
logical representativity, may be of different relevance for 
different processes [26]. SETAC [16] means that not enough 
empirical work has been done to quantitatively characterise 
the expected increase in imprecision induced by differing 
degrees of data pedigree, and that score-based uncertainty 
distributions are still purely hypothetical. 

Strikingly few publications were found on uncertainty in 
MFA. Despite its similarity to LCA, there appears to be con- 
siderable difference in interest in uncertainty. One explana- 
tion may be that LCA has a longer history and is more wide- 
spread, thus more researchers have had more time to explore 
these issues. Another explanation may be that LCA is used 
in commercial applications and for actual decision making 
more often than MFA, which is still mainly a research tool. 
This may put very different demands on reliability. 

6.2 About uncertainty analysis in LCA 

The credibility of LCA can be questioned if the results can- 
not be accompanied by adequate uncertainty analyses. Pre- 
senting results merely as point estimates without uncertainty 
distributions is an unreasonable overestimation of their ex- 
actness. However, there is also a risk that incomplete meth- 
ods for uncertainty analysis give a false sense of credibility. 
One must carefully consider how to present and use the re- 
sults. The aim must be to help decision makers form an opin- 
ion of how much confidence to have in the results, but there 
is a risk that the increased complexity of the results do noth- 
ing but add to confusion. 

It is likely that quantitative uncertainty analyses of many 
comparative LCAs would not be able to show any signifi- 
cant differences between the alternatives, either because es- 

timates of uncertainty are too conservative, or because LCA 
practitioners actually have too much trust in the reliability 
of the results. Still, there is a general perception that LCA is 
useful and de facto can be used to infer environmental im- 
pacts of products and processes. In any case, the usefulness 
of LCA does not only lie in the quantitative estimates of 
emissions and environmental impact. Just as important, al- 
though less tangible, is what is learned about the system 
while carrying out an LCA project. For this purpose the very 
process of assigning DQIs and performing sensitivity and 
uncertainty analyses is more important than the actual quan- 
titative outcome of these analyses. 

A practical objection to applying any of these approaches is 
that any effort to improve data quality and assess uncertainty 
will inevitably require more data collection than what would 
otherwise be needed. As LCA is already rather time and re- 
source demanding, LCA practitioners quite naturally feel re- 
luctant to adding more complexity to the analyses. This re- 
quires careful prioritisation of what issues to focus on. 

6.3 What is needed? 

It is obvious that some kind of tools to address data quality 
and uncertainty are needed. But it is also obvious that it 
must not be too complex. In most cases it would not be 
practically feasible to spend the necessary time and resources 
to collect the necessary data, and thus the tools would not 
he applied. It is not satisfactory to develop tools that gener- 
ate impressive accounts of data quality and uncertainty if 
LCA practitioners do not feel they are worthwhile to use. A 
good tool must lead to an actual improvement of data in- 
ventory routines, model insight and results presentation, as 
well as be of help to decision makers. Simple tools may be 
dismissed as not being accurate enough, but they may well 
win in the long run, simply by being practically usable. 

To limit the amount of extra work, it is important to focus 
the efforts to the most important areas, and areas where 
large improvements can be gained at limited efforts. Uncer- 
tainty importance analysis can be used as a screening method 
to identify the key issues to focus on. Less demanding is to 
prioritise efforts based on experience of what types of un- 
certainty are usually most important. Methodological choices 
(system boundaries, allocation methods, technology level, 
and marginal/average data) tend to have large influence, 
which may well override many other types of uncertainty. 
This type of uncertainty cannot be eliminated, but is rather 
easily illustrated by identifying the relevant alternatives and 
performing sensitivity analysis by scenario modelling. 

The best way to help practitioners and ensure a comparable 
standard of LCA studies would be to agree on a framework 
for data quality management and uncertainty analysis. Tak- 
ing the above considerations into account though, i t seems 
difficult, if not stupid, to develop a framework that outlines in 
detail what should be done and how. Of greater use would be 
a framework that points out the important aspects O f data 
quality and uncertainty in LCA to the practitioner, guides 
through the considerations one must make regarding for in- 
stance desired results, time and resources, describes what one 
can do to address different issues, and describes how to do it. 
This survey should be useful in developing such a framework. 
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